

ASSOCIATION OF TELOMERE LENGTH WITH COLORECTAL CANCER RISK AND PROGNOSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS

Svenja Pauleck^{1,2}, Jennifer Sinnott^{1,2}, Richard Viskochil^{1,2}, Ben Haaland^{1,2}, Richard Cawthon¹, Sheetal Hardikar^{1,2,3}

¹Univeristy of Utah, Salt Lake City, Utah, USA; ²Huntsman Cancer Institute, Salt Lake City, Utah, USA; ³Fred Hutchinson

Cancer Research Center, Seattle, Washington, USA

BACKGROUND

- Telomeres, the ends of the eukaryotic chromosomes, maintain chromosomal stability and induce cellular senescence. (Figure 1)
- Telomere length has been shown to be associated with colorectal cancer (CRC) initiation and progression.

Figure 1. Ref. Doksani, Genes (Basel), 2019

METHODS

Study selection: Following the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) guidelines, we searched Medline, Embase and Web of Science databases through April 2020 using these Medical Subject Headings (MeSH): 'Colorectal Neoplasms' AND 'Telomere' AND ('Survival' OR 'Disease Progression' OR 'Risk'). (**Figure 2**)

Statistical analysis: We extracted odds ratios or hazard ratios (OR/ HR and 95% CI) from included studies. Because there was substantial heterogeneity in how telomeres were quantified, we converted all reported associations to a unified scale assuming a Gaussian distribution. Specifically, we compared shortest quartile (Q1) vs longest quartile (Q4) of telomere length for CRC risk, and Q1 vs Q2-Q4 for CRC survival. We performed a random effects meta-analysis, and assessed inter-study heterogeneity with Cochrane's Q, I² and τ². Funnel plots were calculated to assess potential publication bias.

Figure 2. PRISMA flow chart of filtered studies.

IDENTIFICATION

Records identified through databases

n= 727

SCREENING/ ELIGIBILITY

Records after title, abstract and full text screening n=17

INCLUDED STUDIES

Studies included in meta-analysis n= 13

For risk **n= 8**

For survival **n= 5**

OBJECTIVE

To conduct a systematic review and meta-analysis of the association between (1) telomere length in circulating leukocytes and CRC risk; and (2) telomere length in circulating leukocytes or cancer tissue and CRC survival.

RESULTS

Table 1 Studies included in risk and survival meta-analysis of telemere length and CRC

Author, Year	Speci men	TL ¹ method	TL category	Reported OR/ HR (95% CI)	Calculated OR/ HR (95% CI)
Risk studies					Quartile 4vs1
Zee R.Y.L., 2009	PBL ²	RTL ³	Continuous	1.3 (0.9-1.8)	1.4 (0.8-2.2)
Lee I-M., 2010	PBL	RTL	Continuous	0.9 (0.7-1.4)	0.9 (0.5-1.8)
Pooley K.A., 2010	PBL	RTL	Quartile 4vs1	1.1 (0.5-2.4)	0.9 (0.4-1.9)
Cui Y., 2012	PBL	RTL	Quintile 1vs3	1.6 (0.9-2.6)	1.0 (0.6-1.7)
Boardman L., 2014	PBL	RTL	Percentile 10vs50	1.9 (1.1-3.4)	0.6 (0.2-1.6)
Qin Q., 2014	PBL	RTL	Shorter vs longer	1.3 (1.1-1.6)	0.7 (0.5-0.9)
Fernandez-R.C., 2018	PBL	RTL	Continuous	1.0 (0.9-1.1)	1.0 (0.9-1.1)
Luu H.N., 2019	PBL	RTL	Quartile 4vs1	1.3 (1.1-1.6)	1.3 (1.1-1.6)
Survival studies					Quartile 1vs2-4
Chen Y., 2014	PBL	RTL	Tertile 1-2vs3	2.4 (1.5-3.5)	2.6 (1.7-4.0)
Svenson U., 2016	PBL	RTL	Quartile 1vs2-4	0.5 (0.2-1.8)	0.5 (0.2-1.8)
Gertler R., 2004	Tissue	TRF ⁴	Quartile 4vs1-3	3.3 (1.2-9.0)	0.3 (0.1-0.8)
Valls C., 2010	Tissue	TRF	Quartile 4vs1-3	2.4 (1.2-5.0)	0.4 (0.2-0.8)
Suraweera N., 2016	Tissue	RTL	Continuous	1.0 (0.8-1.3)	1.0 (0.7-1.5)

Table 1. Studies included in risk and survival meta-analysis of telomere length and CRC. Figure 4. Forest plot of random effects model for TL and Author, Year Speci TL¹ TL category Reported OR/ Calculated OR/ CRC survival with subgroup analyses by specimen type men method HR (95% CI) HR (95% CI) (PBL Peripheral blood leukocytes and cancer tissue).

Figure 5. Funnel plot of random effects model for TL and CRC risk to assess potential bias.

Figure 3. Forest plot of random effects model for TL and CRC risk.

Author, Year	Odds Ratio	95%-CI	Weight		Odds Ratio	
Zee R. Y.L., 2009	1.35	[0.82; 2.24]	11.8%		1	
Lee I-M., 2010	0.90	[0.46; 1.76]	8.2%			
Pooley K.A., 2010	0.63	[0.30; 1.33]	7.1%			
Cui Y., 2012	1.04	[0.37; 2.88]	4.3%			
Boardman L., 2014	0.56	[0.06; 5.32]	1.0%		•	- 1
Qin Q., 2014	0.68	[0.50; 0.92]	18.5%			
Fernandez-Rozadilla C., 2018	1.00	[0.94; 1.06]	26.7%		+	
Luu H.N., 2019	1.32	[1.08; 1.62]	22.5%			
Random effects model	0.98	[0.78; 1.23]	100.0%			
Heterogeneity: $I^2 = 58\%$, $\tau^2 = 0.0504$, $p = 0.02$						
				0.1	0.5 1 2	10

CONCLUSIONS

- Our meta-analysis of circulating telomere length and CRC risk showed no association.
- In the meta-analysis of survival studies, shorter telomeres in circulating leukocytes and longer telomeres in tumors were associated with poorer survival, though statistically non-significant.
- Larger prospective studies evaluating telomere length in CRC survival are needed.
- Studies of telomere length would benefit from a uniform set of mandatory reporting guidelines for measurement and analysis, to decrease heterogeneity among telomere-related studies and make results easier to compare and combine.

¹TL telomere length; ²PBL Peripheral blood leukocytes; ²RTL Relative telomere length by quantitative PCR method; ³TRF Telomere restriction fragment by luminescence method